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1
OPTIMIZING DATA PARTITIONING FOR
DATA-PARALLEL COMPUTING

BACKGROUND

Distributed computing is a form of computing—generally
by operation of application programs or “code”—in which
many calculations are carried out simultaneously, often on a
large body of “data,” on the premise that large problems can
often be divided into smaller problems which can be solved
concurrently (“in parallel”) for efficiency. To accomplish this
parallelism, distributed computing makes use of multiple
autonomous computers (or processors) to solve computa-
tional problems by dividing the problem into many sub-prob-
lems that are then solved by one or more of the autonomous
computers (or nodes) in a cluster of computers. To perform
computations on very large problems or datasets, distributed
computing clusters (comprising tens, hundreds, or even thou-
sands of autonomous computers) may be utilized.

Modern distributed execution engines (such as MapRe-
duce, Hadoop, and Dryad) and their corresponding high-level
programming languages (Pig, HIVE, and DryadLINQ) have
done much to simplity the development of large-scale, dis-
tributed data-intensive applications. In all of these systems,
execution parallelism is controlled through data partitioning
which in turn provides the means necessary to achieve high-
level scalability of distributed execution across large com-
puter clusters. Thus, efficient performance of data-parallel
computing heavily depends on the effectiveness of data par-
titioning.

However, current data partitioning techniques are often
simplistic and can lead to unintended performance degrada-
tions or job failures. Many of the known techniques—origi-
nally developed for database applications—are ill-suited for
complex user-defined functions and data models common to
data-parallel computing. When partitioning data to enable
parallel computations on multiple computers, the initial chal-
lenge is determining which partition function to use and how
many data partitions to generate, and the wrong choices—or
even the best choices from among limited options—can result
in highly skewed workloads leading to poor performance
with some machines completing in minutes while others run-
ning for hours. Consequently, the efficiency of the entire
distributed processing system is constrained by the least effi-
cient partition from among all of the partitions created. As
distributed execution systems become increasingly used for
more complex applications—such as large-scale graphing
applications to detect botnets or analyze large-scale scientific
data—the lack of effective and efficient partitioning schemes
for distributed execution engines have become a major per-
formance liability.

SUMMARY

Various implementations disclosed herein are directed to
systems and methods for automatically generating a data
partitioning plan that—given a data-parallel program and a
large input dataset, and without having to first run the pro-
gram on the input dataset—substantially optimizes perfor-
mance of the distributed execution system. Several such
implementations explicitly measure and infer various prop-
erties of both data and computation to perform cost estima-
tion and optimization. For certain such implementations, esti-
mation may comprise inferring the cost of a candidate data
partitioning plan, and optimization may comprise generating
an optimal partitioning plan based on the estimated costs of
computation and input/output (1/0).
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Various such implementations may be directed to a system
for optimizing data partitioning for a distributed execution
engine comprising a plurality of modules including one or
more of the following: a code/EPG analysis module for deriv-
ing properties of a data-parallel program code in each vertex
in a corresponding execution plan graph (EPG) compiled
from the data-parallel program code; a complexity module
for at least deriving the computational (or I/O and network-
ing) complexity of each vertex in the EPG; a data analysis
module for generating compact data representations corre-
sponding to an input data for processing by the data-parallel
program code; a statistics and sampling module for determin-
ing the relationship between input data size versus computa-
tional and input-output (I/O) costs; a cost modeling and esti-
mation module for estimating the runtime cost of each vertex
in the EPG and the overall runtime cost represented by the
EPG (e.g., for a job represented by the EPG); and/or a cost
optimization module for determining an improved data par-
titioning plan.

While performance of a data-parallel program also
depends on many other factors—including, for example,
infrastructure configurations and job scheduling—the chal-
lenges of data partitioning have been largely unaddressed and
the various implementations disclosed herein improve data
partitioning and, in turn, the usability of distributed execution
systems.

This summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the detailed description. This summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

To facilitate an understanding of and for the purpose of
illustrating the present disclosure and various implementa-
tions, exemplary features and implementations are disclosed
in, and are better understood when read in conjunction with,
the accompanying drawings—it being understood, however,
that the present disclosure is not limited to the specific meth-
ods, precise arrangements, and instrumentalities disclosed.
Similar reference characters denote similar elements
throughout the several views. In the drawings:

FIG. 1 is an illustration of an exemplary networked com-
puter environment in which the numerous implementations
disclosed herein may be utilized;

FIG. 2 is a block diagram illustrating the system architec-
ture of an exemplary data partitioning optimizer for a distrib-
uted execution engine representative of several implementa-
tions disclosed herein;

FIG. 3 is a process flow diagram illustrating the operation
of'the exemplary data partitioning optimizer for a distributed
execution engine representative of several implementations
disclosed herein;

FIG. 4 illustrates exemplary operation of a partitioning
graph that may be utilized by several implementations dis-
closed herein; and

FIG. 5 shows an exemplary computing environment.

DETAILED DESCRIPTION

A distributed execution engine (sometime referred to as a
distributed memory multiprocessor or a distributed com-
puter) is comprised of multiple processors connected by a
network (and thus is highly scalable) to solve computational
problems using parallel computing (where a problem is
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divided into many sub-problems, each of which is solved by
different processor). For example, a massively parallel pro-
cessor (MPP) is a single stand-alone computer with many
networked processors using specialized high-speed intercon-
nect networks where generally each processor has its own
memory, copy of the operating system, and copy of the appli-
cation(s). In contrast, a cluster (or cluster computer system) is
a distributed execution engine comprising multiple computer
systems (each a “cluster computer,” “autonomous computer,”
or a “machine”) connected by a network where each machine
has its own processing elements, memory, operating system,
and applications, and the network generally comprises com-
modity networking hardware. A grid computer system (or
grid) is similar to a cluster but where the networked comput-
ers communicate over the Internet which, because of its rela-
tively low bandwidth and high latency, are the most distrib-
uted form of parallel computing and typically deals only with
“embarrassingly parallel” problems, that is, problems that are
easily split into parallel tasks that require little or no commu-
nication between such tasks.

A distributed execution engine—whether an MPP, a clus-
ter, or a grid—may comprise one or more multiprocessor
computers and/or comprise one or more multicore proces-
sors. A multicore processor is a processor that includes mul-
tiple execution units (“cores”) on the same chip, enabling it to
process multiple instructions per cycle from multiple instruc-
tion streams. A multiprocessor computer, in comparison, is a
stand-alone computer system (or “machine”) with multiple
processors that share memory and may connect via a bus,
point-to-point links, or other high-speed means; however,
“bus contention” (where more than one processor attempts to
use the bus at the same time) and similar limitations often
prevent such computing systems from scaling to more than
thirty-two (32) processors. As such, a multiprocessor com-
puter may comprise one or more multicore processors for
multiplying computational power. In addition, there are also
several specialized parallel/distributed computer systems
based on reconfigurable computing systems with field-pro-
grammable gate arrays, general-purpose computing systems
on graphics processing units, application-specific integrated
circuits, and vector processors, to name a few, for example.

Notwithstanding the foregoing, the terms “concurrent,”
“parallel,” and “distributed” strongly overlap, and are used
interchangeably herein such that a same system may be char-
acterized as “parallel” and/or “distributed” without loss of
generality such that processors in a distributed system run
concurrently in parallel. Where distinctions are necessary and
the terms are disjunctively and in obvious conflict to a person
of'ordinary skill in the relevant art, then the term “parallel” as
used in parallel computing shall refer to all processors having
access to a shared memory that can be used to exchange
information between processors, whereas the term “distrib-
uted” as used in distributed computing shall refer to each
processor having its own private memory (a part of the “dis-
tributed memory”’) where information is exchanged by pass-
ing messages between the processors (presumably through an
intermediary of some kind).

While various implementations disclosed herein are
described in terms of a distributed computing system and,
more specifically, in terms of a cluster computer system (or
“distributed computing cluster”), skilled artisans will readily
recognize that such implementations can readily be imple-
mented on other types of distributed computing systems, and
nothing is intended to limit the implementations disclosed
herein to any specific distributed execution engine type nor to
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any specific configuration of processors such as multiproces-
sors but, instead, are intended to be given the widest interpre-
tations possible.

FIG. 1 is an illustration of an exemplary networked com-
puter environment 100 in which the numerous implementa-
tions disclosed herein may be utilized. The network environ-
ment 100 may include one or more clients, such as a client
110, configured to communicate with each other or with one
ormore servers, such as a communication server 140, through
anetwork 120. The network 120 may be a variety of network
types including the public switched telephone network
(PSTN), a cellular telephone network, and a packet switched
network (e.g., the Internet). While the client 110 and the
server 140 are illustrated as being connected by the network
120, in some implementations it is contemplated that the
client 110 and the server 140 may be directly connected to
each other or even executed by the same computing system.

As shown in FIG. 1, and for several implementations dis-
closed herein, the communication server 140 may be part of a
distributed computing cluster 130 comprising the communi-
cation server 140 and other computers (or processors) in a
processing cluster 150 comprising a plurality of cluster
machines (or simply “servers”) 152-1, 152-2, . . ., 152-»
(each also referred to interchangeably as a “machine”, “clus-
ter server”, “cluster computer,” or “autonomous computer”)
interconnected by a network 120'. The communication server
140 may be a separate machine from the machines in the
processing cluster 150 (as shown) or the communication
server 140 may also comprise a machine in the processing
cluster 150. Moreover, the network 120" may be local network
of'some kind (e.g., a local area network or LAN) or it may be
an extension of a larger network such as network 120.

In some implementations, the client 110 may include a
desktop personal computer, workstation, laptop, PDA, cell
phone, smart phone, or any WAP-enabled device or any other
computing device capable of interfacing directly or indirectly
with the network 120, such as a computing device 500 illus-
trated in FIG. 5. The client 110 may run an HTTP client, e.g.,
a browsing program, such as MICROSOFT INTERNET
EXPLORER or other browser, or a WAP-enabled browser in
the case of a cell phone, PDA or other wireless device, or the
like, allowing a user of the client 110 to access information
available to it at the communication server 140 or to provide
information to the communication server 140. Other applica-
tions may also be used by the client 110 to access or provide
information to the communication server 140, for example. In
some implementations, the server 140 may be implemented
using one or more general purpose computing systems such
as the computing device 500 illustrated in FIG. 5.

In current data-parallel computing systems, “hash” and
“range” partitioning methods are widely used to partition
datasets, but these methods remain highly vulnerable to
workload skewing and inefficient partitioning. For example,
partitioning data using either a partition function (e.g., a hash
function) or a set of equally spaced range keys often yields
unbalanced partitions in terms of data or computation,
thereby resulting in poor performance (if not outright system
failures). Moreover, in multiple stage computations, data
skewing and/or computation skewing may not occur until
later stages of the execution, making it difficult (if not impos-
sible) to predict such skews before running the program.

While efforts have been made to reduce data-skews for
database applications such as, for example, SQL queries,
these solutions are not well-suited for certain distributed
execution systems—for example, data-intensive parallel
computing in a share-nothing computer cluster—because
they generally presume highly structured data that is indexed
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and carefully stored so that strategic placement of a small
execution instructions (such as an SQL query) at the desired
data nodes is possible based on pre-computed data statistics.
Consequently, these solutions do not support complicated
data models or arbitrary user-defined functions which are
common to distributed execution computing. Similarly, in
determining the number of data partitions to use, often there
is a tradeoff between the amount of computation per partition
versus the amount of cross-node network traffic, and balanc-
ing these two competing factors can be challenging. And
particularly challenging are dynamic datasets—that is,
datasets that change frequently even from one execution to
another—that necessarily require partitioning schemes that
adapt to the changing data in order to achieve any kind of
efficiency.

Indeed, finding optimal data partitioning for a data-parallel
program is inherently challenging, and existing solutions
used for parallel database systems are not directly applicable
due to the differences in data and programming models. For
example, traditionally database systems often use a set of
predefined operators but provide little or no support for user-
defined functions (UDF), while data-parallel computing
often involves arbitrary user-defined functions which, in turn,
make it difficult to ascertain how data is accessed, processed,
and transformed to the next computation stage. Moreover,
database systems typically operate on highly structured
schema with built-in indices, whereas data-parallel programs
compute on unstructured data where quickly computing data
statistics (such as key distribution) without data indices is
substantially more difficult. Database systems are also
designed to query static datasets because of the overhead of
storing data and building indices; in contrast, data-parallel
computing often processes different and new datasets where
frequent changes require adapting data partitioning schemes
accordingly. In addition, to minimize writing intermediate
data, parallel database systems often send optimized query
plans to all nodes at the beginning of the query, whereas
data-parallel computing often employ the use of physical disk
storage to form communication channels for fault tolerance
but which may not be efficiently accessed for analyzing for
intermediate data.

To optimize data partitioning, various implementations are
disclosed herein. FIG. 2 is a block diagram illustrating the
system architecture of an exemplary data partitioning opti-
mizer 200 for a distributed execution engine representative of
several implementations disclosed herein. FIG. 3 is a process
flow diagram illustrating the operation 300 of an exemplary
data partitioning optimizer for a distributed execution engine
representative of several implementations disclosed herein.

With reference to both FIG. 2 and FIG. 3, at 310 the EPG
module 206 compiles an inputted data-parallel program code
(or simply “code”) 204 into a job execution plan graph (EPG)
and produces the initial data partitions. A data-parallel pro-
gram expressed by a higher-level programming language
may be compiled into an execution plan graph, that is, a
directed acyclic graph with multiple stages. For each stage, at
least one vertex is created to process each input partition, and
thus multiple vertices can run in parallel to process multiple
input partitions. Moreover, in certain such implementations
the aforementioned initial data partitions may be produced by
the EPG module 206 using a partition function (e.g., a hash
function), or may be supplied by a user, or may be derived
from some other source.

At 312, the code/EPG analysis module 220—which
receives as input both the EPG generated by the EPG module
206 and the code 204—derives various properties of the ver-
tex codes. For certain implementations, the code/EPG analy-
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sis module 220 may leverage automatic static and dynamic
programming language analysis techniques to understand
both the data model and the semantics of a program in terms
of its processing flow, computational complexity, and rel-
evant data features. In some such implementations, users
might manually specify attributes of user-defined functions
(UDFs) to provide hints for programming language analysis.
Select implementations may even predefine a set of callback
APIs that users can implement with domain knowledge to
explicitly specify data attributes (e.g., image features) or to
define the way to measure computational complexity based
on input. At 314, this code/EPG information is then used by
the complexity module 222 to derive the computational com-
plexity of each vertex program and other data features.

Concurrently, at 316, the data analysis module 210 linearly
scans the data 202 to generate compact data representations.
These compact data representations may comprise a repre-
sentative sample set for input data; data summarizations
including the number of input records, data size, etc; an
approximate histogram of frequent data records; and/or the
approximate number of distinct keys. The first two items
(samples and summarizations) provide general statistics that
are useful for several operations. The third item (histogram) is
used for estimating skews. The fourth item (keys) is useful for
estimating the output size for certain distributed execution
jobs.

The code/EPG information from 312 is used to help the
data analysis module 210 determine how to strategically
sample the input data 202 and estimate relevant data statistics.
For example, in instances where it may be desirable to under-
stand which image features (such as texture richness, resolu-
tion, etc.) determine the computational cost, the code/EPG
analysis module 220 may prompt the data analysis module
210 to identify image records in the data 202 that are expen-
sive to process and then distribute them evenly among the
data partitions. Thus, by extracting program-specific data
features and using them as a guide to the data analysis pro-
cess, the system is able to generate compact data representa-
tions. Based on the results of this data analysis, at 318 the
statistics and samples module 212 determines the relationship
between input data (such as size) versus execution costs (such
as computational and I/O costs).

At 320, the complexity information from the complexity
module 222 and the relationship information from the statis-
tics and samples module 212 are together used by the cost
modeling and estimation module 230 to model and estimate
the runtime cost of each vertex in the EPG and the overall
runtime cost for the job represented by the EPG. These mod-
eled estimates may consider many factors including but not
limited to CPU time, output data size, and network traffic. For
certain implementations, these estimates may specifically
include analytically estimating the costs using code analysis
results. For certain other implementations, the estimates may
specifically include empirically estimating the costs by run-
ning a job on the sample data and then performing regression
analysis on the measured job performance for each vertex.
(As used herein, “performance” broadly refers to a wide
range of metrics including but not limited to the number of
processes required, CPU time, job latency, memory utiliza-
tion, disk I/O, and network 1/O, among other measures.) For
yet other implementations, these two approaches may be
combined to improve the estimation accuracy. Once the cost
of'each vertex in an EPG is estimated, the critical path can be
identified (using techniques such as dynamic programming)
in order to estimate the cost of the entire job.

At 322, the cost estimate produced by the cost modeling
and estimation module 230 is used by the cost optimization



US 9,235,396 B2

7

module 232 to determine an improved data partitioning plan
and, if one is found at 324, then at 326 the updated EPG
module 234 generates an updated EPG and loops back to 320
for further analysis (e.g., finding a critical path in the updated
EPG) by the cost modeling and estimation module 230 for
another around of optimization. This process continues itera-
tively until the results converge, that is, until at 324 no
improved data partitioning plan can be found by the cost
optimization module 232. At that point, at 330, the resultant
EPG that is output of the cost optimization module 232 is in
turn output as the final optimized EPG 240 for execution.

For several implementations, the optimization process 300
may be applied to stages offline before computation on the
entire data set begins. For other implementations, the optimi-
zation process may operate concurrent with the computation
to dynamically partition data such as in an online or dynamic
data context. For certain implementations, optimization may
be introduced as a new stage in existing programming mod-
els. In yet other implementations, the data analysis process
may be piggybacked when the system writes immediate data
to disks so that it adds little overhead to the overall computa-
tion.

For various implementations, a flexible and expressive par-
titioner may be used for the iterative cost estimation and
optimization process. Such a partitioner may derive an opti-
mal partitioning scheme stage by stage for the EPG using a
hierarchical partitioning graph (HPG)—where large parti-
tions are recursively split and small partitions are merged—so
that the final partitions are relatively balanced in per-partition
estimated cost. By balancing the cost at each stage, the meth-
odology effectively minimizes the total cost along the critical
path of the EPG to effectively reduce the overall cost of the
job.

FIG. 4 illustrates exemplary operation of a partitioning
graph 400 that may be utilized by several implementations
disclosed herein. To achieve an optimized solution, the cost
optimization module 232 of FIG. 2 inserts an additional par-
tition stage into the current EPG to greedily search for an
optimized partitioning scheme. In FIG. 4, two root nodes 402
and 404 represent two partitions of the sampled input data. In
certain implementations, these two root nodes 402 and 404
may first be deconstructed and recombined into a larger num-
ber of smaller partitions 410-417 using an existing partitioner
(such as, for example, a hash partitioner). The EPG is then
updated accordingly by the updated EPG module 234. The
cost modeling and estimation module 230 then identifies the
critical path up to the current stage in the updated EPG, which
in this example as illustrated in FIG. 4 includes the vertex
associated with partition 415. To reduce cost, the partition
415 is split into two partitions 422 and 424 by another parti-
tioner (which again may be a hash partitioner). Meanwhile,
partitions 410, 412, and 414 of this example, all having small
execution costs, may be identified as such and then merged
into partition 430 in order to reduce I/O, the overhead of
launching vertices, and the potential overall cost.

For several such implementations, this process of cost esti-
mation and optimization by recursive data merging and split-
ting may be iterated until the results converge. As such, each
iteration is a greedy step towards minimizing the overall cost.
The EPG is updated throughout the process until the last
update for the final partitioning scheme, and the optimization
process may then continue for the next stage in the EPG. Once
the partitioning scheme is derived, a data record from the
input can be directly assigned to the appropriate data partition
without intermediate data splitting or merging.

FIG. 5 shows an exemplary computing environment in
which example implementations and aspects may be imple-
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mented. The computing system environment is only one
example of a suitable computing environment and is not
intended to suggest any limitation as to the scope of use or
functionality. Numerous other general purpose or special pur-
pose computing system environments or configurations may
be used. Examples of well known computing systems, envi-
ronments, and/or configurations that may be suitable for use
include, but are not limited to, personal computers (PCs),
server computers, handheld or laptop devices, multiprocessor
systems, microprocessor-based systems, network personal
computers, minicomputers, mainframe computers, embed-
ded systems, distributed computing environments that
include any of the above systems or devices, and the like.

Computer-executable instructions, such as program mod-
ules, being executed by a computer may be used. Generally,
program modules include routines, programs, objects, com-
ponents, data structures, etc. that perform particular tasks or
implement particular abstract data types. Distributed comput-
ing environments may be used where tasks are performed by
remote processing devices that are linked through a commu-
nications network or other data transmission medium. In a
distributed computing environment, program modules and
other data may be located in both local and remote computer
storage media including memory storage devices.

With reference to FIG. 5, an exemplary system for imple-
menting aspects described herein includes a computing
device, such as computing device 500. In its most basic con-
figuration, computing device 500 typically includes at least
one processing unit 502 and memory 504. Depending on the
exact configuration and type of computing device, memory
504 may be volatile (such as random access memory (RAM)),
non-volatile (such as read-only memory (ROM), flash
memory, etc.), or some combination of the two. This most
basic configuration is illustrated in F1G. 5 by dashed line 506.

Computing device 500 may have additional features/func-
tionality. For example, computing device 500 may include
additional storage (removable and/or non-removable) includ-
ing, but not limited to, magnetic or optical disks or tape. Such
additional storage is illustrated in FIG. 5 by removable stor-
age 508 and non-removable storage 510.

Computing device 500 typically includes a variety of com-
puter readable media. Computer readable media can be any
available media that can be accessed by device 500 and
includes both volatile and non-volatile media, removable and
non-removable media.

Computer storage media include volatile and non-volatile,
and removable and non-removable media implemented in any
method or technology for storage of information such as
computer readable instructions, data structures, program
modules or other data. Memory 504, removable storage 508,
and non-removable storage 510 are all examples of computer
storage media. Computer storage media include, but are not
limited to, RAM, ROM, electrically erasable program read-
only memory (EEPROM), flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by computing device 500. Any
such computer storage media may be part of computing
device 500.

Computing device 500 may contain communication con-
nection(s) 512 that allow the device to communicate with
other devices. Computing device 500 may also have input
device(s) 514 such as a keyboard, mouse, pen, voice input
device, touch input device, etc. Output device(s) 516 such as
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a display, speakers, printer, etc. may also be included. All
these devices are well known in the art and need not be
discussed at length here.

It should be understood that the various techniques
described herein may be implemented in connection with
hardware or software or, where appropriate, with a combina-
tion of both. Thus, the methods and apparatus of the presently
disclosed subject matter, or certain aspects or portions
thereof, may take the form of program code (i.e., instructions)
embodied in tangible media, such as floppy diskettes, CD-
ROMs, hard drives, or any other machine-readable storage
medium where, when the program code is loaded into and
executed by a machine, such as a computer, the machine
becomes an apparatus for practicing the presently disclosed
subject matter.

Although exemplary implementations may refer to utiliz-
ing aspects of the presently disclosed subject matter in the
context of one or more stand-alone computer systems, the
subject matter is not so limited, but rather may be imple-
mented in connection with any computing environment, such
as a network or distributed computing environment. Still fur-
ther, aspects of the presently disclosed subject matter may be
implemented in or across a plurality of processing chips or
devices, and storage may similarly be effected across a plu-
rality of devices. Such devices might include personal com-
puters, network servers, and handheld devices, for example.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

What is claimed:

1. A system for optimizing data partitioning for a distrib-
uted execution engine, the system comprising:

a memory; and

aprocessing unit coupled to the memory that is configured

to operate:

a code/EPG analysis module for deriving properties of a
data-parallel program code in each vertex in a corre-
sponding execution plan graph (EPG) compiled from
the data-parallel program code using at least one
attribute of a user-defined function provided by a user
and a predefined set of callback application program
interfaces (APIs) that enables the user to specify data
attributes for partitioning the data-parallel program
code and define measuring computational complexity
for partitioning the data-parallel program code based
on input;

a complexity module for at least deriving the computa-
tional complexity of each vertex in the EPG;

a data analysis module that concurrently and coopera-
tively functions with the code/EPG analysis module
for generating a plurality of compact data representa-
tions corresponding to an input data for processing by
the data-parallel program code, wherein the data
analysis module, in conjunction with the code/EPG
analysis module, samples the input data and estimates
data statistics;

a statistics and samples module for determining the rela-
tionship between the input data and the computational
and input-output (I/O) costs based at least in part on
the estimated data statistics;

a cost modeling and estimation module for estimating
the runtime cost of each vertex in the EPG and the
overall runtime cost represented by the EPG; and
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a cost optimization module for determining a data par-
titioning plan.

2. The system of claim 1, wherein the code/EPG analysis
module uses automatic static and dynamic programming lan-
guage analysis techniques.

3. The system of claim 2, wherein the automatic static and
dynamic programming language analysis techniques derive
at least one semantic from among the following plurality of
semantics: processing flow, computational complexity, and
relevant data features.

4. The system of claim 2, wherein the code/EPG analysis
module uses hints for programming language analysis pro-
vided for user-defined functions.

5. The system of claim 1, further comprising an EPG mod-
ule for compiling the data-parallel program code into the
EPG, wherein the EPG comprises a plurality of vertices, and
wherein each partition from among a plurality of initial data
partitions is processed by at least one vertex from among the
plurality of vertices.

6. The system of claim 5, wherein the EPG module pro-
duces the plurality of initial data partitions from the input
data.

7. The system of claim 6, wherein the initial data partitions
are produced by the EPG module using a partition function.

8. The system of claim 1, further comprising an updated
EPG module for generating an updated EPG when the data
partitioning plan is determined by the cost optimization mod-
ule.

9. The system of claim 1, wherein the EPG is a directed
acyclic graph having multiple stages wherein each stage com-
prises at least one vertex to process each input data partition
from among a plurality of initial data partitions.

10. The system of claim 9, wherein at least two vertices run
in parallel to process at least two initial data partitions.

11. The system of claim 1, wherein the at least one attribute
of a user-defined function provided by the user provide hints
for analysis of the data-parallel program code.

12. A method for optimizing data partitioning for a distrib-
uted execution engine, the method comprising:

determining a plurality of parts of a data-parallel program

code corresponding to each vertex in a corresponding
execution plan graph (EPG) using at least one attribute
of a user-defined function provided by a user and a
predefined set of callback application program inter-
faces (APIs) that enables the user to specify data
attributes for partitioning the data-parallel program code
and define measuring computational complexity for par-
titioning the data-parallel program code based on input,
the EPG comprising a plurality of vertices correspond-
ing to a plurality of initial data partitions;

deriving a computational complexity for each vertex from

among the plurality of vertices in the EPG;

sampling input data using the EPG for estimating data

statistics;

determining a plurality of relationships between the input

data and a plurality of execution costs based at least in
part on the estimated data statistics;

estimating a runtime cost for each vertex from among the

plurality of vertices in the EPG; and

estimating the overall runtime cost represented by the

EPG.

13. The method of claim 12, wherein determining the rela-
tionships between the input data and the execution costs is
further based on the plurality of parts of the data-parallel
program code that correspond to each vertex in the corre-
sponding EPG.
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14. The method of claim 12, further comprising compiling
a data-parallel program code into the EPG.

15. The method of claim 12, further comprising attempting
to determine an improved data partitioning plan and:

if the improved data partitioning plan is determined, updat-

ing the EPG and iteratively repeating the estimating and
determining until another improved data partitioning
plan cannot be determined; and

if the improved data partitioning plan cannot be deter-

mined, outputting the resultant EPG.

16. The method of claim 15, further comprising producing
the plurality of initial data partitions from the input data for
processing by a data-parallel program code.

17. The method of claim 15, wherein determining the
improved data partitioning plan comprises using a hierarchi-
cal partitioning graph.

18. A computer-readable storage medium that is not a
signal, the computer-readable storage medium comprising
computer-readable instructions for optimizing data partition-
ing for a distributed execution engine, the computer-readable
instructions comprising instructions that cause a processor to:

analyze a data-parallel program code and its corresponding

execution plan graph (EPG) using at least one attribute
of a user-defined function provided by a user and a
predefined set of callback application program inter-
faces (APIs) that enables the user to specify data
attributes for partitioning the data-parallel program code
and define measuring computational complexity for par-
titioning the data-parallel program code based on input;

10

15

20

25

12

concurrently analyze input data and a plurality of corre-
sponding initial data partitions by using the results of
analyzing the data-parallel program code and the EPG;

estimate a runtime cost for each vertex from among a
plurality of vertices comprising the EPG;

determine an improved data partitioning plan and update
the EPG accordingly; and

repeat the estimate and the determine until an optimized
EPG is found.

19. The computer-readable medium of claim 18, further

comprising instructions for causing the processor to:

deconstruct and recombine at least two data partitions into
at least three or more smaller data partitions;

update the EPG;

identify a critical path in the updated EPG; and

split at least one vertex corresponding to the path in the
updated EPG.

20. The computer-readable medium of claim 18, further

comprising instructions for causing the processor to:

deconstruct and recombine at least two data partitions into
at least three or more smaller data partitions;

update the EPG;

identify two or more smaller data partitions having smaller
execution costs; and

merge the two or more smaller data partitions into a com-
bined data partition.
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